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Compact Representation of the Separating k-sets of a Graph
S - Arkady Kanevsky

Coordinated Science Laboratory
University of Illinois

Urbana, IL 61801

January 1988

ABSTRACT

"'We present an 0 (n) space representation for the separating k-sets of an undirected
k-connected graph G for fixed k, where n is the cardinality of the vertex set of G.
Namely, the total space used by the representation is 0 (kn 7ny-- We also improve the

upper bound on the number of separating k-sets of G to 0 (2k
7 )' which has a matching

lower bound.,,

1. Introduction

Connectivity is an important graph property and there has been a considerable amount of work on algorithms

for determining connectivity of graphs [BeX,Ev2,EvTa,GaGiSoLiLoWi]. An undirected graph G = (VE) is k-

connected if for any subset V' of k-1 vertices of G the subgraph induced by V-V' is connected [Evi. A subset V'

of k vertices is a separating k-set for G if the subgraph induced by V-V" is not connected. For k=l the set '

becomes a single vertex which is called an articulation point, and for k=2,3 the set V' is called a separating pair

and a separating triplet, respectively. Efficient algorithms are available for finding all separating k-sets in k-

connected undirected graphs for k <3 [Ta,HoTa,MiRa.KaRal.

In [KaRa2,Ka] we addressed the question of the maximum number of separating pairs, tripet and k-sets 1n

biconnected, triconnected and k-connected undirected graphs, respectively?

An undirected graph G on n vertices has a trivial upper bound of n tenubrosprtig-

Nis research was supp'ncd by NSF under ECS 8404966, the S.miconductor Research CoporatLkm under 87-DI'-109 and the Joint Scr% i.cs

L;c.ironjs Progrm under NO0014-44-C-01. 9.
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sets, k 'a 1. The graph that achieves this bound for all k is a graph on n vertices without any edges. For k = I the

maximum number of articulation points in a connected graph is (n -2) and a graph that achieves it is a path on n ver-

n (n-3)
tices. For k =2 the maximum number of separating pairs in an undirected biconnected graph is n and a graph,-- 2

that achieves it is a cycle on n vertices [KaRa2]. Further, we observed that there is an 0 (n) representation for the

separating pairs in any biconnected graph (although the number of such pairs could be O(n 2)) iKaRa2l. For k=3

the maximum number of separating triplets in a triconnected graph is (n-1)(n-4) and we presented a graph,

namely the wheel [Tul, that achieves it [KaRa2]. The number of separating k-sets in a k-connected graph is

0 (3kn 2) and we show that the bound is tight up to the constant [Ka]. The lower bound on the number of separating

k-sets in a k-connected undirected graph is Q~(2 k n)

k
2

*In this paper we present a linear representation of separating k-sets in k-connected undirected graphs. For

k =2 representation is different from the one presented in [KaRa2]. We also give the alternative prove of the upper

bound on the number of separating k-sets, which match the previous upper bounds for k=2 and k=3, and improves

the upper bound for general k to 0 (2 )k n We will first present representation for k=2 and k =3 and then general-

ized the technique for general k.

2. Graph-theoretic definitions

An undirected graph G =(V,E) consists of a vertex set V and an edge set E containing unordered pairs of dis-

tmnct elements from V. A path P in G is a sequence of vertices <v 0 , • • • ,vk> such that (v,_4 ,v,)E E,i=, • • ,k. The

path P contains the vertices v0 , ,vk and the edges (v0 ,v t ), ... ,(vk 1 ,vk) and has endpoints vO, vk, and internal

vertices v- , vk_,.

We will sometimes specify a graph G structurally without explicitly defining its vertex and edge sets. In such

cases, V(G) will denote the vertex set of G and E(G) will denote the edge set of G. Also, if V' % V and vE V we will

-r' usc the notation Vuv to represent V, (v).

An undirected graph G =(VE) is connected if there exists a path between every pair of vertices in V. For a

2raph G that is not connected, a connected component of G is an induced suhgraph of G which is maximally con-

nectcd.

0



3

-w A vertex V E V is an articulation point of a connected undirected graph G =(V,E) if the subgraph induced hy

V- v) is not connected. G is biconnected if it contains no articulation point.

Let G =(V,E) be a biconnected undirected graph. A pair of verticcs V1 , ,V2 E V' is a separating pair for G ifI the

induced subgraph on V - V I, V2 ) is not connec:ted. G is triconnected if i t contai ns no separating pa ir.

A triplet (V 1 ,V2 ,V3 ) of distinct vertices in V is a separating triplet of a triconnected graph if the subgraph

i nduc ed by V - I(VI , V2 , V3 ) is not c onnected. G is four-connected if it contains no separatin g tri pletLs.

Let G -(V,E) be an undirected graph and let VaV. A graph G'-=(V',E') is a subgraph of G if

E'c_.En(vj,v1 )Ivjv 1EV) The .subgraph of G induced by V is the graph G"=(V,E") where E"=Eq

3. Representation ror k--2

Let G = (V,E) be an undirected biconnected graph with n vertices and mn edges. We denote with g (n) the

upper bound on the size of a compact representation of separating pairs of a graph on n vertices. Let f v~ lv 2 ] be a

jseparating pair that divides G into nonempty G I and G2. Let (W 1,W2 ) be a"rs" separating pair with w, EG1

and W,E G,. It dividesG I into G and G' 1 and divides G 2 into G 2 and G"-2 (see Figure 1).

Yi+

G 3*

G'It40W
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maximal set of vertices x in GI such that fx,w2) is a cross separating pair. The set of u's is the set of articulation

points in G2. Moreover, the set of u's along with the subgraphs of G 2 between them is a path from v, to v

Analogously, the set x's is a set of articulation points of G I with additional condition that the x's along with the sub-

graphs of GI between them is a path from vI to v2. Number the vertices v1 , u's, v 2 , and x's by Yi, Y2 and so on

going clockwise along the paths. We denote by G, the subgraph of G between yi and y,+i. Note that some G, can

be empty (consists of a single edge). Thus, the graph G becomes a cycle with vertices y's and Gj's alternating on it.

Every pair of vertices y's give a separating pair of G unless they are adjacent and the subgraph between them is

empty. Hence, we can represent all of them by the following structure:

1) the cycle: the set of vertices y's

2) a vertex for every G, with a flag to specify if G, is empty. Edges between G, and y, yi+j.

Note that when there are no cross separating pairs then we get a trivial cycle with two vertices vI and v 2 and

two edges connecting them. Since the sets x's and u's are maximal all other separating pairs are inside Giuy,v,..

Note that G, can be the union of disconnected components, but each of them is connected to yj and yj,. Let the

cardinality of set of vertices y's be 1. Based upon the above observations we get the following recurrence relation

g(n) -. Fg(ni + 2)+41,

. here q (n, + 2) represent the upper bound for all separating pairs inside G, wyjuyj4 . The cardinality of G, = n,

and .(n, + 1) = n. Any g (n) that satisfy the recurrence will be an upper bound on the size of representation of

"* separating pairs of G. Clearly, linear g (n) is one of them (see Appendix).

4. Representation for k=3

The wheel W. [Tul is C._ together with a vertex v and an edge between v and every vertex on C._I. It is

easy to see that W, is triconnected and has separating triplets.

"Assume there exists a separating triplet (v1 .V,vv3 in G, which separates G into nonempty ( and G, zec

Figure 2).

Lemma I: Onlv one of these three vertices has type 3 separating triplets (w.,v,,w, } such that w, _ G: and w-

" KaRa.

.,I"
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U

V3

Figure 2.
Separating G into G 1 and G 2 by separating triplet (v ,v 2, v 3

Proof: Assume there is separating triplet (w1,v 2 ,w2 ) of the third type in G, where wE eGI and 'V2 EG2 . It

separates GI into K1 and K 2 , and separates G2 into K 3 and K4 . Vertices vI and V3 must belong to the different

components with respect to separating triplet (w 1, v2 ,w 2), otherwise either {w 1 , v2 } is a separating pair, or {w-,v,

is a separating pair, or both.

Claim 1 Vertex v2 has a direct edge to every nonempty subgraph K1 ,K2 ,K 3,K4.

W.L.O.G. assume that K1 is not empty and Vxe Kl, (x,v2)eE. Then {v,,w 1 ) is a separating pair of G,

w hich separates KI from the rest of the graph.

Now, we will prove that there are no separating triplets of the third type which use v, or v3. We will prove

this by contradiction. W.L.O.G. assume there is a separating triplet {u1 ,v 1 ,u2 ), where u1 EG and ui, EG, (ul

* may be equal to w, and u 2 may be equal to w2).

Case I: u,, E K 2, if K2 is not empty (see Figure 3).

By Claim I for v i and the existence of separating triplet (u1 ,v 1 ,u2 }, K1 , wl, K, - u, belong to the same

* connected component with respect to separating triplet (U1 ,V1 ,U2). If v2 belongs to the same component then

v:,u, I is a separating pair which separates K 3Uw 2uK 4 uv 3 from the rest of the graph. If v, does not belong to

the same component then (v ,u I is a separating pair which separates K1 uwj uK 2 - U1 from the rest or the graph.

nP Analogously, u _ K4 .

aCaNe 2: u=w,.
i ~j

SeVi
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~Figure 3.

.-. Illustrating Case 1 in the proof of Lemma I.

~Since {u1 ,v1,u2} is a separating triplet then v2 does not have any edges to K1 and hence, K, is empty hy

* Claim 1. But then {v1 ,u2} is a separating pair, if {u1 ,v1 ,u2} is a separating triplct.

': Analogously, u2  w2"
.

,' 2 Cae:u KUad2e s

SIt" (ui,v ,u 2j is a separating tripletheneither ui,u2 },or {u1 ,v1 }, or {v1 ,u2) is a tpparatng pair.

* -, That means that if there is a separating triplet of the third type which uses one of the v,,i= K2,3 then there re

12.i

no sparting tis oftepathid tpet thuen tether vU,U,or ,v, , orl~2 s i.aaig ar

Let I ,eVO2 ) be a separating triplet of a graph G on n vertices, and v0 be the only one of the three verticcs

of this separating triplet which might participate in a separating triplets of the third type with respect to v v. v, .

*i _ Consider all separating triplets of the third type (w 1 ,vo,w 2 } such that wiEG1 and W2EG,, together with

"v ,v,v,). All such separating triplets use v0 as the "central" vertex. Rename the vertices w, 's, w2's, v, and v,

into {v1 v,, ,vi} going clockwise, such that they form the wheel with vo in a center, where any two nonadjacent

- vertices form a separating triplet with v0 . The subgraphs between vi and v,,, are denoted with G,, and some of

P1 them may be empty. Now, the graph G looks like a wheel with vO in acenter vi, and G, (i= l, -' ') on a cycle.

Every pair of vertices on the cycle of the wheel form a separating triplet with vo unless they arc adjacent (v,

and v,+ ) and the subgraph (G,) between them is empty. Hence, we can represent these separating triplets by the

following structure:
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1) the wheel: { v 0. , -- vk) with edges of G

2) a vertex for every G, with a flag to specify if Gi is empty. The edges between Gi and vi, vj~1 and between vj3

and vi, G, with flags to specify if the edge is real.

Lct us see where the rest of separating triplets of G lie.

Observation The remaining separating triplets belong to GjQv0Qvjuv541ju the neighbor of vi in Gi-1 if such a

neighbor is unique u the neighbor of vi,., in GL+j if such a neighbor is unique.

Let (w 1 ,W-,,W3 ) be a separating triplet with w, eG I and W2 ,W3 re G2. The separating triplet (W1 ,W2 ,W3 ) separates

G I intoL I and L 2 , and separates G 2 into L3 and L4 (Figure 4).

Let us see how the original separating triplet fV1 ,V2,V3 ) is separated by the separating triplet IW1 ,w2 ,w3 ) }

The vertices {V1 ,V2,V3 cannot belong to the same connected component of G with respect to the separating

triplet (IVI,W 2 ,W3 ), otherwise either w, would be an articulation point, or (W2 ,W3 ) would be a separating pair, or

both. \V.L.O.G. assume that v I belongs to one connected component and V2 ,V3 to the other.

Subgraph L, must be empty, otherwise {wl,vj) becomes a separating pair. Since the graph is triconncied,

we have

VV

Figure .4.
Illustrating t prooxl of the Observation.

.... ... P. W PP



1) (w1,v 1)EE,

2) 3x.yEL 3uw 2Uw 3: (x,vI)EE, (y,v)EE and

3) V :eLuL 4 Uv 2uv 3: (z,vj)eE.

Hence, vertex w, is the unique neighbor of vertex vt in G1 . Moreover, if there are any separating triplets

with one vertex in GI and two in G2 which separate vI from v0 and v2 , then w I is one of the vertices of the

triplet.

A separating triplet cannot have all its three vertices in three different Gj's otherwise two of these vertices

would form a separating pair. From the proof of the Lemma l and the fact that the set (v1 ,v2, •,Vk is maximal,

we know that if there is a separating triplet which involves a vertex from Gi, then the other two vertices belong to

{vu..vj }{v0)Gj and the neighbor of vi in Gi- 1 , if such a neighbor is unique, and symmetrically a 'unique'

• ' neighbor of vi+1 in G5 +2. This proves the Observation.

Let g (n) be the size of a compact representation of the separating triplets in a graph on n vertices, and let the

number of vertices in Gi be n,. Then Tk(ni + 1) + I = n, and we can write the following recurrence relation

g'' g(n) ,g g(ni + 5) + (61 -, 1) ,

i=1

where (61 -+- 1) stands for the space used to store the wheel information including multiple edges. The solution to

this recurrence is clearly linear (see Appendix). This proves that there is a succinct 0 (n) size representation of the

separating triplets.

S 5. Representation for general k

,,.
Let G =(V,E) be an undirected k-connected graph with n vertices and m edges. We denote with ' (n) and

f (n) the upper bounds on the size of representation and the number of separating k-sets for k-connected graph on n

5 vertices. Let V"= (v1 ,v 2, ,vk) be a separating k-set, whose removal separates G into nonempty G, and G (see
- Fiure 5). A separating k-set {wj,w,, ,wk of G is a cross separating k-set with respect to V' if" i,j: w, ,E G,

and w,e G, Let the cardinalities of GI and G2 be I and n-I-k. respectively. Let the upper hound on the si/C of

L the representation of the cross separating k-sets be h(1,n-1), and the maximum number of cross separating k-sets he

% r( ,n -1 ). Then any g(n ) and f (n) that satisfy the recurrences

S
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Figure 5.
Dividing G into G i and G 2 by separating k-set {v 1 , ,Vk

g W)= [g9(1+k) +g(n-I) +h(I,n-I

are upper bounds on the size of representation and the number of separating k-sets in G. Now we will derive upper

bounds for the functions h and r and tune up the recurrences.

Let (w I.w 2, , -wk) be a cross separating k-set with (w , )w c:G 1 . fvs+,+, ,Wivk) c G2 and

'V + , Ws+9) C (V1 I vk). The separating k-set (w I,w 2 , - -wk I separates G 1 into G 3 and G 4 , separates

G, into G5 and G6, and divides (vj, - * vj into (vj, -. - ,v,.], (v,+t+1, .. vkj and vj = ws+, i 1-I.j. (see

Figure 6)

Case I None of G1, i = 3,4,5,6 are empty. (see Figure 6)

The sets (wl,Wi, .... .~,Vl,' * Vr), {W1 ,W2,- W.+,r11 Vk), (VI- Vr11 -+ 0,Wk) and

fV-,,1  VkWtl Wk) are separating sets of G that separate G3, G4 , G5 and G6 respectively, so their cardi-

nalities are greater than or equal to k. Then,

[s + + r 2! k r+ s + k

s--k-r-t !k s r {r -s Jtk

From now on we replace the subscript r by s. Let A = v1 , ,), B ~ Vk),

- , m,, D = (Wr.,, 1 , - v' '' j, and 7' v,.',) f~, ws,j). For C'

IA4 1 lB I ICI = ID I = -

Li2



U G3 A G
V.5

V.v

C

T

w Figure 6.

/ Dividing G intononempty componets ysprtigkst

GV~ an Gw6

Proof: W.L.O.G. assume 3vi: VxEG 3 : (xv,)eE. Then (v3, ,+,,wl, .. ws) - (v) is a separating (k-l)-set.

Claim 3 For every XEA there are yE G3 and ze G5, such that (x,y)EE and (x,z)EE. Analogously, for every ver-

p tex r of B, C and D there are vertices y and z in appropriate neighboring Gj, i =3,4,5,6, which are adjaccnt to x.

Proof: W.L.O.G. assume there is xr=A such that for every YE G03 (x,y)e E. Then A uCuT- x)i s a separating (k-

1)-set.

Lemma 2 All cross separating k-sets containing CuT and at least one fixed vertex of D can be represented in

k -1

0 ((--)t ) space, and their number is 0 (2 2

*Proof: Assume we have a separating k-set {w 1 , Wst,,st~- ... 
T
r,+a-b.Ys+i,.a~b+!. Yk).vj where

P% x'sEG 5 , y'sE 06, a : 1, and either b or k-s-t-a-b is greater or equal to I (the new cross separating k-set is Iif'-

fercnt from the old one) (see Figure 7).

A LLet I Xx~t~aa], ,.ts.+a-b (x's) and I -= Ys~t+a-b-. ,vk) (y's), and let D be dividled into D -

* ,~,1 ,jE which is in the same connected component as G3, A. and part ol'G , and F which is in ilhe

~~Magi
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Illustrating the proof of Lemma 2.

same connected component as G 4 , B and part of G6 . Also let It divide G5 into G's and G 5, and let I divide G,,

*into G'6 andG -6(see Figure 7).

Separating sets T+D '+'E-+-I and T+D'+F+I separate G -5 and G -6, respectively. The cardinalitics of these

separating sets are less than k. Hence, G-"5 and G-6 are empty. Moreover, since C+T+D '+II+F and

C-?-T+D '-E+I are separating sets and C+T+D and C+T+D '+11+1 are separating k-sets, 1E I =l 1/1, and

IfI I =I F 1. Note that the argument still holds if either!!t or Ifare empty.

Next, we wvill show that if we replace part of E and/or part of F we will necessarily use only vertices of 11

and/or I for it, regardless of whether we replace part of D 'or not. In other words, /I and I are unique for E and F.

The proof is by contradiction.

Assume that there exist I1I+If1(~+II, such that C+T+D '+11+11 is a separating k-set. Let I I gG5 and

I I gGj. Also, let I 1 +11 divide E into E I and E 2 , and divide F into F I and F 2 (see Figure 8).

,l Let III be separated into two parts, 1I1', adjacent to E and E "I adjacent to F. By the above arguments iiis

adjacent to E:, 1"1 is adjacent to F 2 , and!12 is adjacent to E2+F 1. Since all neigzhbors of E in G 6 are also n 1, and

all nighbors of F in G 5 arc also in /1, I1l, c l/ and I1 is divided into I' =lull and 1-1= l14I'1. L-i
L

I[' 11 -1 ",, andltet 1= IU

1F. ' l
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G 4 B , H

'

* "Figure 8.
Illustrating the uniqueness of a replacement for a part of cross separating k-set.

The separating set T+D '+11'+1l separates El from the rest of the graph and has cardinality is less than k.

Hence, E 1 is empty and we have I=I', E =E 2 and tt, = H" 1 . Analogously, the separating set T+D'+11+II

separates F1 from the rest of the graph and has cardinality is less than k. Hence, FI is empty and we have F = F,.

E = E , II = I11 and I = 11. This contradict the assumptions.

Note that the arguments still hold if either 11 or I are empty, or if we replace only parts of E and F. If part of

D 'is replaced as well, then we will not replace it, so that we will look only at the replacements for E and F. Also, if

there exists a separating k-set that replaces F by If, then there is no I IG 6 that replaces any part of F for any cross

" 'separating k-set described in Lemma 2.

Thus, any replacement of any part of F for any cross separating k-set specified by Lemma 2 lies in 11. The set

of vertices which is used for all possible replacement of any part of D for a cross separating k-sets specified by

' Lemma 2 will be called the fringe of D, where i is the fringe of F and I is the fringe of E. Note that there could be

• k-t
parts of D which do not have any replacements. The cardinality of the fringe of D is less than --- ID I. Hence,

the representation of all cross separating k-sets with C+T fixed along with at least one vertex from D takes

.- space, wohepre n a e is needed to specify all edges between D and its fringe. This proves he

% , space complexity for the representation.

1',
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The number of different subsets of D is 2 D Since for every subset E+F of D there is a unique replacement,

(if it exists) that a separating k-set specified by Lemma 2, the number of separating k-sets with C+T fixed along with

k-

at least one vertex from D is upper bounded by 0 (2 2 ). This proves the second part of the Lemma.

El

Corollary All cross separating k-sets containing T+D and at least one vertex from C can be represented in
'P' k-ik- -~

0 (( )--) space, and their number is 0 (2 2

Take the maximal set X of disjoint CE G I such that Ci+T+D is a separating k-set. Analogously, take the max-

imal set Y of disjoint DeG 2 such that C+T+Di is a separating k-set. For T fixed, all cross separating k-sets are

k-1 k-1
upper bounded by 0(2 2 IX 122 IYi)=O(2k- IXi IYI), and are represented in O((k-)2 (1XI + 1YI))

space. Next we will see how many different 7's we need to consider.
1" 'Take the smallest T = T: such that a cross separating k-set will have nonempty Gi i=3,4,5,6, if it exist. If

there exist a separating k-set with different T = T 2 , T,*T 2 , then it can be of four different types:

Type 1). T2:rAO4 and T 2 r'B*0,

* - Type 2). [T2:4=OorTr"B=O] andTlrT20,

Type ). r r2 -=j and T1 nT 2 0

r e = or T2 1 2=0

Type 4). T 2cvA=0 and T,' B --0.

Let us first consider type 4 cross separating k-sets. Since T 2 must lie completely inside T1 and T , has the

smallest cardinality, then T 2 = T 1 . Let the cardinality of X, the maximal disjoint set of C's, be 11, and let the cardi-

nality of the maximal disjoint set Y be 12, where 11 + 12 = 1. Let us number A, the set X, B and the set Y. So A

-'4 -becomes A 1 , the "nearest" D from Y becomes A2 , and so on going clockwise. The cardinality of this set is I - 2.

From the proof of the Lemma 2 we know that all cross separating k-sets of type 4 consist of three parts: T1, C which

is inside G1 and is inside some C's from set X and its fringe, and D which is inside G, and is inside some D's from
".:,, set Y and its fringe. Note that T any two A,,i=I, 1-. ,/+2 are also separatng k-sets if the parts of the graph

between them are nonempty. We can also replace parts of A, by its fringe as long the above condition will be true.

Let the part of the graph G between A, and Aili=l, -..1+2 be Gii-l, , 1+2 (i in this case taken mod 1-2).

Let G, - the fringe of A, in G, - the fringe of A,,, in G, be G",i=l, -• ,1+2. The only ca e when IA,.,,A, (or
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parts of the fringe of A, and A,. 1 ) i <j is not a separating k-set when i=j- 1 and G, = 0.

Based upon above observations the structure (structure 1) which covers all cross separating k-scts of type 4

will be the following:

1) A, with its fringes for all i=l, -•- •1+2,

2) For every nonempty G ',i=1, 1 • •+2 we fill all nonexistent edges ot the complete graph on the neighbors of

G ", as real edges. If G ',,i=I, .+2 is empty for some i then we fill these edges as virtual edges. All of the

edges of G between A, and Gi+ ,i=l, •,1+2 are in the structure as real edges.

~Let us see where the rest of the separating k-sets lie assuming there are no cross separating k-sets of type I

and type 2. Note that we allow separating k-sets of type 3. Let us first the definition of the exceptional

separating k-sets. The separating k-set is exceptional if it separates only part of Ai an nothing else for

i=l, -• ,1+2.

Lemma 3: All separating k-sets which are not covered by the structure 2 and not of type I and 2 and not

exceptions are inside GjuA, and its fringes inside Gi-uA,+ and its fringes inside Gi+1 .

Proof.- Since there are no type I and type 2 and no exceptions in separating k-sets, no separating k-set is using T.

There are also no cross separating k-set which are not covered by the structure 1. Let us see what happens if a

separating k-set crosses some Ai,i=I, .. •1+2 (see Figure 9).

IW.L.O.G. let EkFuH is this separating k-set, which crosses Ai, where EcG5 , FcG6 and I11.4,. It divides

A, into A "1, A "i and 11. It also divides G5 into G 's and G "-, and it divides G 6 into G '6 and G "(. Both A ", and A,

are nonempty, otherwise the set Y is not maximal, or there is no cross separating k-sets. If G -5 and G ", are

nonempty then EuluA ", and FulluA ", are separating sets with cardinalities bigger or equal to k. But both of

them can not have cardinality bigger or equal to k, hence, one of G -5 or G -6 must be empty. W.L.O.G. let G " be

empty. Since A,1. 1uP-A, and A1. 1 uTA',utt,.F are separating k-set and separating set, respectively,

IF I> IA", I. Since EulIuA "', is a separating set, since both G" and G' can not be empty (exception),

IA", I > IF I. Hence, A", I= IF I, and F is part of the fringe of A,.

Let us see if a cross separating k-set crosses two adjacent A,'s. W.L.O.G. E IIlFuIII is a separating

k-set, which divides A, into A ;, I1, and A ,, and divides .4,, into A ,+,, I1, and A "',.I. It separates G,_ into

G, and G ,it separates G, into G and G'" it separates G,,, into G;,, and G ',. By the abowe argumcnt

%
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A 0
A 2  0

0 A

~Figure 9.

~Illustrating the proof of Lemma 3.

2.r" I  '"C ">_ and G "' are empty, and E belongs to the fringe of A,, and I belongs to the fringe of A, 1 . Note that wc

, i don't need to usc thc assumption that there are no cxceptions. A cross separating k-set can not cross three adjacent

Ass since with respect to the middle A, non of G " and G can not be empty. Hence, all other separating k-set,

' except exceptions, belong to G,uAi its fringes in Gi_1 uA,. . u its fringes in G, ..

T'A'

~Let us now consider exceptions. W.L.O.G. let there exist an exceptional separating k-set, which separates

I, part of A,. In other words, there is a separating k-set which separates part of A, (A ',), such that all of the vertices not

iiin A>T are neighborsof A'. The numberof the neighbors of A in G -uA- 1 wGu 1 1 is less thank. Consider

0 the minimal set of subsets of A, that covers all vertices of.A, which can be separated by some exccptional separating

k-set. The number of subsets in Lhis set is less than or equal to the cardinality of A,, whence is at most --. The

number of neighbors of A, that are used for separating these subsets is less than or equal to k vertices prsubsets, s

'lk
2

their total is at most -- a-. Note that - o--k such vertices can be inside either G f or G,A,=,. Moreover, i

v.' At partcpates in some subset of A,, that can be eparated by an exceptional separating k-set, then c has le a han
& vcruces wn r eence, i" we take the union of the following sets

e _

Let~ ~ ~ us no osdrecpin.WLOG e hr xs a xetoa eaaigks hc eaae
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I) GA,oA,.j

2) the neighbors of A, in G,_I .- A,_ , that are used for exceptional separating k-sets

3) the fringe of A,

4) the neighbors of A,+ in Gji. UAi 2, that are used for exceptional separating k-sets

5) the fringe of A,., for all i's,

will contain all separating k-sets which are not covered by the structure.

The number of exceptional separating k-set for Ai is bounded by the number of different subsets of A,.

k- k-,

Hence, it is less than or equal to 2 2 .Thus, the number of exceptional separating k-sets is at most (1 +2)2 2

Based upon this Lemma and the above observation about exceptions, and using structure 1, we can write the

following recurrence, which is valid if there are no type I or type 2 separating k-sets:

Sp.* 1+2 k-
g(n) = Tg(ni+k(k-t)-t) + (1+2)(-)k +t,

i-I 2

where every term inside the sum covers one of the G,'s, and (1+2)(- ) + t is the upper bound on the size of the
' 1 2

.. trctre1 Ntetht ni+ (l+2)(k-t) 3structure 1. Note that -+t = n. The solution to this recurrence is O (kn .4- k3) (see Appendix). Note

that each (n, + k (k -tyti) is less than n itself.

Analogously, the recurrence on the upper bound on the number of separating k-sets become

f)1+2 i1 + k-i

= (n,+k(k-t)+t)+ - 2 2 (1+2).

2
The solution to this recurrence is 0 (2k--) Note that all cross separating k-set of type 3 are covered by these

recurrences.

Now we will look at type 1. Let T 2:,A=T',, T 2 riB=T'2, and TjnT=T,. With respect to a new cross

, separating k-set which uses T2 some G, i=3.4.5,6 could be empty. Let us first look at a harder case when none of G,

"=34.5,6 are empty with respect to a new cross separating k-set.

A new cross separaung k-set must cross C and D of the old cross separating k-set which uses T, otherwise

the Clum 2 with respect to the new, cross separating k-ct will he violated (sec Figure It.

Second. rI, otherwise Claim 2 will be contradictcd for the old cross separating k-sct.

e,
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C- T// 1

'/ D/

// 2

2 x

G

Figure 10.
Illustrating the configuration between two cross separating k-set

-~ which use different T's.

Third, C'>-C',1,II + - 2 , C ",+C -11 1 +Tj+T'2 , D'1 +D'2i11 2 +Tl +T ",, and D ", +-D ",+II,+T1 +T' are

separating sets with cardinalities less than k, which separate G -4, G -3, G -6, and G -5, respectivcly. HeInce, G'.

G " , G -5, and G -6, are empty.

Fourth, C', +11 1 iC "2+T2 +D '2+112 +D -2, C'2 -1 1 ±+C -,+T,+D ',+lI,,-D 1 ,

pCII-1C"+T2 -- D 2 11,+D- 2, and C'2+I1I+T 2+D'I+112+D' 2 are separating sets. Hencc, IC', I ! IC',I.

ID' 1 2! IDz I, IC" 1 2! IC"21, and I D ",I I D "21. Also, C 1-i111±C 2+T' 2+T1+D 11II "I-

C ,T' 2 +11 1-C' 1 +T*D '1+II,+D '3. C3I 1 C T + D '2+11, +D -1, and

C 'w11 ,-C '34T: --1' 2-sD',-1-I,.D "2 are separating sets. Hence,

r
IC-, I - 1 IC, I I C C'21 > 0

I ID",I1 IT", I ID'3I ID' I >(0

ID I+IT ID II

Aosince we are still in a Case I with respect to both old and new cross sparatit., k-sets, we havec ihe following

equalities

1,4,1 1 B, I I DI 1/1, 1 1 D I I C'2 + lI I I C" I



Noto that the set 7-2 has edges to the set D the set T ", has edges to the set D ,the set 7 ', has edges to thc ,ct

C'.adtestT2hsegst h e eas f h li Iwt epc otenwcossprtn
Hence, the max~imal disjoint scts for C's and D's (X and Y) will have cardinaliUcs equal to 1.

Let us take a maximal T2 , and let us take the fringes of A,, B,, C and D (see Figure 11).

C' does not have the fringe in G4 , otherwise part of C' which has a fringe becomes a part of If IC' has

the fringe in G 3 then the part of C', which has the fringe can be separated from the rest of thc graph by a ;eparauing

set C ' ,-',Tl+ the fringe of C'1 in G3, whose cardinality is less than k. Hence. C', does not have the lringe.

Analogously, C ",, D ',and D ", do not have the fringes. Symmetrically, T'2 and T ",' do not have the Cringes.

Let T, be the union of vertices which are used for all possible T2 which create a cross separating k-seits %% it~h

nonempty G, i=3,4,5,6. Let D - be the union of all possible D '1, L5 ", be the union of all possible D -1 , C 'j he the

union of all possible C'1 , C~be the union of all possible C " 1. C'2 be the union of all possible C', C ivh the

union of all possible C "2, D '2 be the union of all possible D '2' and D ~be the union of all possible D ~.Let us

show that all of these sets are disjoint.

frr

T 13

2 6

Figure 11.
Illustrating the representation of separating k-sots ol Cisc I

it two or more differert intersecting I *s exist.
Structure 2).

Ole:



Since all of them are symmetric we will prove it only for C and C'.Assume there are T3 and T1, such that

C " for T3 is not disjoint from C ', for T4 . Then noncmpty intersection of C ", for 7T3 and C', for T4 is separated

from the rest of the graph by a separating set C -2 for T3 u. T' 3 u T, T-4 _ C ' for T 4, whose cardinalait is less

than k. This contradiction proves the statement.

The cardinality of the union b) '1 uD 2,u1 "4L)/ is less than k -t, and analogously, the cardinality of

C C I'cIsis less than kt.Let us call C',C 2 Dand D"_2 'he pseudofringe. Note that A and B

might have fringes , but by the symmetry T2 -TI does not have any fringes.

% The structure which represent all separating k-sets for all possible I's will the following (Structure 2):

Il the original separating k-set with its fringes,

2) the cross separating k-set with minimum cardinality TI with its fringes and pseudofringes.

3for every nonempty G ', i='),4,5,6 we will fill all nonexistent edges of the complete graph on the neighbors of

G'~, if G , is empty for any i=3,4,5,6 we will fill these nonexistent edges of this complete graph by the virtual

h ecdges. (For G '3 we fill the edges between the vertices of the fringe of A in G3 , T1.,, part of A , which

Jocs not have any fringsC 1 .1 5 /1 ,1/ 2 andC')

From the construction of the structure it is easy to see that this structure cavers all cross separating k-sets for

all po~ssible 7-s, of type 1. Let us see now where the rest of the separating k-sets lie, if we have separating k-scLs of

IN-Pe 1.

If there exists T, with at least one of the G, empty i=3,4,5,6, assuming it is not exception, such that there is

W_ aothr I- wihT-T i oempty along with nonempty T2~'B and T,rnA, then all cosseparating k-sets o l

F.are: covered by the above structure. (They belong to the fringes 01 A and/or B in G, or G7' and the rest b"long to

the, oriiinal cross separating k-set with ius fringes or pseudofringes). So all cross separating k-sets are covered hy

this, structure, assuming there are no exceptions, hence, all separating k-sets, are either inside (- A _B_ th -

1 riniccs oft . and B in G7, or (7- _A _BjI'1 , the fringes o!".A and B in G7 , or cross separating k -set,, co% ered, h% Owe

,irm tare. Since the struture is symmet~ric. we can look at the cross separating k-sets where the original ,cparatmn2

-,,,t i, C- -) I*. Then the pseudotringes of C and D hccomc the pseudo: ringcs of 4 andi B. WViih rL"peC: 1o 14 hil

914 k';,,rahion of G; all separating k-seLs are either inside G7 ,C D,- .1 the lrin~e o1 C in G andik the lirri, ol
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D in 0 6. or inside G.4 u0 6 uC~jDuTju the fringe of C in G 3 and the fringe of D in G05, or separating k-sets

covered by the structure. But since in both cases they are the same separating k-sets, all separating k-sets arc either

inside G 3,-AuT, C~ the fringe of C in G4 u the fringe of A in G 5, or inside G4 UBUCUT, U the fringe ol'B in

G 6. or inside G SuADuT, u the fringe of A in G 3', the fringe of D in G06, or inside G 6 juD~u the fring

of B in G~u the fringe of D in 0 5, or the separating k-sets covered by the structure. To cover all exceptions we will

do what we did for types 3 and 4 separating k-sets, we will add k (k -i) neighbors of A, B, C and D to each of G,,

G 04, Gs and of G 6 which can participate in exceptional separating k-sets. Hence, the size of representation is

i=1 2

where every term inside the sum covers one of G, i=3,4,5,6 along with its appropriate neighbors and fringes, and

(k -i4
S , k -t is the upper bound on the size of the structure. Note that Yni + 2k - i= n, hence the solution to the

2=

Tverecurrence is 0 (nk + k 3) (see Appendix). The number of exceptional separating k-sets is upper hounded by

4 2 2The upper bound on the number of separating k-sets become

4 4-

Pich solution to it is 0) (2'n - 2 kk 2 ) (see Appendix).

Let us now see what happens if we are in type 2 and no separating k-sets; of type I exist. \V.L.O.G. assume

there is a separating k-set which uses T2 =T '..T,, where T 2EA and T2 E TI, and no separating k-set oft tpe I exist

Pt cc Ficure 12).

ii .; i3.45.-,are nonempty with respect to a new cross separating k-set then we become in the Case I with

r ->[vct to a new cross separating k-set, hence 1A, I = 1B I which is impossible. Hence, one of the G, i3 m5t ith

rceNect to a new cross separating k-set must be empty. \V.L.O.G. let the empty G, be either G Ior G, with re"pect

to) the new cross separating k-set. If G., is empty then G5 with respect to the new cross separating k-ctiut

,rmpt%. otherwise I' -7*>.A ,-;D, of the new cross separating k-set becomes a separating set with cardinztikv

tl an k. I leci 0 (; is empty then all cross separating k-set of type 2 belong to the original '.eparatine k -sct %% ih it:

)rn\Then all separati k-set are either inside G; _.A _B_*j the fringe of A4 in (~the trinee oi B? in (;,,. or

_4 _ B -I' - the Iric of.A in (;,, the rrinize ol'B in G_.~ or they belong to the union ol A _1? -Ithe 1ritie>

antkmi B \ote that the latter ,cparati K\ets ark. covered h\ the structuire 2. Wc can .% rie ith rk" irri1
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'/ //' 5/ / 1

7.73

B I

Tr ,, ''H/

/D"

r Figure 12.
Illustrating type 2 separating k-set when no type I separating k-set exist.

* - similar to the above ones except for the sum which will be up to 2 instead of up to 4. The solution will be still of the

-~ same order. If G 3 is empty then I C2 1 2! 1A, 1, otherwise C 2uT"2 uT~uB is a separating set with cardinality less

than k. If 0, crosses D, (see Figure 12) then A~.T'2 uT,,D2 is a separating set, so IC~I = IA,!.

C~T~D~UI~D" isascpaaig set, so ID", 2 ID" 1. Also C2 uT 2 '.jD' 2 uJ1uD "1 is aseparating set. so

ID" ID",I. Combining these two we get ID", I = ID-2I. Since, CuT1uT juD~u1UD"J and

CTT-'- - - are separating sets, so IT'2uD 2I ID', 1 2! ID'21. Since TluD'1 -lftiD-,

-ieparates G -6~ from the rest of the graph, and since the cardinality of this separating set is less than k, G -6 is empty.

Hence. D "2 belongs to the fringe of D in Gr, T2 = T, in order for the Claim 2 with respect to the old cros,

Neparating -iet to be true. And since I C, I - I T', I = I A Iand since the cardinality of the new cross separating k-

-. et is k, 'D' I = ID'. 1. So, all cross separating k-sets of this type belong to G5 -AJDuJT~u the fringec of,-; in

G the trinve of D in Gf6, if there are no exceptional separating k-sets. Also in the maximal set of disjoint D\ 0)h

all D'sexcpt D b ou G,,. If G5 With rcspect to the new cross separating k--set is nonempty, then by the

* ~ dn'ea.-ument C, will belong it) thc fringe of .4. Hence, all cross separating k-sets belong to the set mcmnned

* h .naimcly, G4 -.4 -1 -D 1 the fringe of-A in GlQ . the fringes of D; in G,.

-Let us uik, the maximal set of C's and D', (X and Y). We know that all cross separating k-,,eis 0 t% pc 2 i

n, inf ;r tvloni: to G-.. 4 -LD 1'1,-; the frinic { 4'.4 in G the fringe of 0 in Gn,. Since we need io comlidker



all symmetric cases, and since we don't have any cross separating k-sets of type I, all cross scparating k-sets o the

type 2 belong to G 3 u-.CuTv. the fringe of A in G5k the fringe of C in G4 , or G..B.Cur'. the fringe ofi/

in G,.-, the fringe of C in G 3, or G 5 uAuDuTIQ the fringe of A in G3ui the fringe of D in G6 , or

G 6 u.B -Du'T u the fringe of B in G4 u the fringe of D in G.. Note that C's and D's are not the same in these .cLs.

In case of G 3 C is "nearest" to A, in case of G4 C is "nearest" to B, in case of G5 D is "nearest" to A, and in case of

N"G 6 D is "nearest" to B. Let us see where the rest of separating k-sets must lie. First, if there are no cross separating

k-scts A, th G5 nonempty (or same other appropriate symmetric G, i=3,4,5,6) then it is still possible to have a crov s

s,,parating k-sets.

All cross separating k-sets consist of three parts: part one is in G lpart two is in G2 and part three is T7. Part
'one longs to some C from the set X or its fringe or the fringe of A in G1 or the fringe of B in G4. Part two

onlongs to some D from the set Yor its fringe or the fringe of A in G5 or the fringe of B in G 6. That covers all cross

"* -,cparating k-sets which use TI, otherwise either set X or set Y is not maximal. We don't have any cross separating

, " - ts of type I. All cross separating k-sets of type 2 with nonempty appropriate G, with respect to them belong to

the part of the graph between A and the nearest D in G2 along with A and its fringe and D and its fringe. Hence, all

other separating k-sets belong to G I wA ..'BvT1 with its fringes, or G2 uAuBuTI with its fringes.

' -$ Hence, all cross separating k-sets of type 2, except exceptions are covered by the structure 2 or inside the the

,ubcraphs associated by G , G, 1 ,1, G1, . 2 and G1. 2 . As for the exceptions the upper bounds we got for types 3 and 4

still hold. since no part of T: can be separated by them (otherwise Claim 2 is contradicted). So, the recurrence

"hich were written for the type 3 and 4 separating k-sets covers type 2 cross separating k-sets also, including excep-

tions. . That conclude Case 1.

Case 2 For an,' separating k-set every cross separating k-set will have one of the G, i=3,4,5,6 empty. Not every ver-

tcx in both G. and G, can be used for cross separating k-sets.

O " W.L.O.G let G, will be empty (see Figure 13).

Since Gj is nonempty by as.,umption. and G. is nonempty since there are no exception, CjI'B and AT -1) are

4%

' ' ,eparating sets. So their cardinalities are bigger or equal to k. hence, I C I = IA4 I :rnd 1 B I =I D 1. So. C is part of

t-
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G GA c /A

~: T

Figure 13.
Illustrating Cases 2 and 3.

.A and B in G-,, or G 2uAuTuBu the fringes of A and B in G 1, except for exceptions. So all separating k-sets

including the exceptions are either inside GjuAuBuTuj appropriate at most k2 neighbors of Au1'uB in G, or

inside GIAIBuTI,- appropriate at most k2 neighbors of AuTIB in G, which are used in exceptional separating

,,.. *.k--sets. Hence,

-~here n1 and n2 are the cardinal ities of G, and G2 . We still have that nj +n 2 +k =n, and thc solution to this

recurrcncc isO (k2 n) (see Appendix). Note that n, + k (k-I) < n for i=1,2.

For the upper bound on the number of separating k-sets we get the following equality

f (n) =f (n, +I2k) +f (n2 +2k) +2A:,

where 2' covers all exceptional separating k-sets. And its solution is clearly smaller than 0 (2 k!n' (sec Appendli'o.
k

That conclude Case 2.

Case 3 For eveny separating k-set all cross separating k-sets are lopsided (one of the G, i=,,4,5,6 will he empt.

ndeither Gor G, arc such that every vertex of them is used for some cross separating k-sct.

W.LO.G lt C 3be empty and the smallest G every vertex of G; is used for somTe cross Neparatini: k-set (,

Figre1.3).Thee retwo sucss ihrG;or G(6 are empty, otherwise we will be in Case 2. Take C as larve as
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possible.

If G6 is empty then A ,,BkCuDuT with all edges between them and filling real edges for nonempty G5 and

G4 and virtual otherwise (analogous to the structure 1) will specify all cross separating k-sets. If G5 is empty then

C TkfD separate A from the rest of the graph. Hence, CuTuD is an exceptional separating k-set. So the third

Pstructure will be the following:

1) A, B and T -the original separating k-set,

2) All the neighbors of A BuT that are used for a cross separating k-sets with edges between them and the ori-

ginal separating k-set.

since the remaining separating k-sets are inside G2 uAuBuT, we derive the following recurrence relation:

g (n) = g (n-1) + k

whose solution is f (n) = 0 (k 2 n). Analogously, we have the following recurrence relation for the upper

bound on the number of separating k-sets

i f(n) =f (n-l) + 2k,

whose solution is 0 (2kn).

That conclude the proof of all cases. Our final result is that all separating k-sets have 0 (k 2 n) space represen-

tation, and their number is 0 (2 -k')
k

,.
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APPENDIX

,(n+ 1)=n 2 1<<_n n, 0
i=1

g(n) _ max(g (n, + 2) + 41)

Let g(n) 4n- 16,

g (n) < max(ig (ni + 2) + 41) = maxky_(4(n, + 2) - 16) + 41) =
% i=1 i=1

max(4X,(ni + )+ 41 - 161+ 41)= max(4n - 81) <_ 4n - 16

X(ni+ l)+ I =n 2 < <1 n-I ni >0

i=1

g (n) < max(Tg (ni + 5) + 61 + 1)

Lt g(n) =6n - 55,

g (n) max(yg (n, + 5) + 61 + 1) = max(y (6(ni - 55) + 6 + 1)=
L1tgin=6n ls gi il

max(6(1:(ni + 1) + 1) - 311 + 61 + 1) = max(6n - 251 - 5) 6n - 55

Ii~k -: t n - i

(nj+ )+t=n 0< ik-2 21<2k >0.... ~ ~ - n>-

(k - )".t'~ g(n)!< max(y-'g (n, - (k - t)k + t) + lk- + t
l2

__ i=1

Let (n) 2nk -4k 3 - 2kt + -- 3ki - t,

. , *.
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g (n) mnax( g (n, + (k - i). -t + 1k~k- + t

I 4=1 2

2 2 2

max(2kn--2k3 (1-!)-f-2k~(-1+2t+ (-1 2 -)kt- 1 -3) -+ )

2kn -4k - 3kt + 21kn -4k +2"ki+k23ii
2

Hence, .g (n) =0 (nk + k 3).

Zn+ +---)IiSn 2 l2 Oi n- 2
k k- i

f (n):5max(Ff (n + k(k -i++i)42' 1(1 -Y2) +2 21)

* Let

7k ~ ~~ ~ 2-ek-i2
f (n~ 2 ken - 2"kk21 + 21* kit '2'kt - + ki 1  2k- + A~~ - 2 2k-lk2

-k- 1 k

2 2 k (1 'i
f (n)! mxy+2k -2k-lk1 2kiI

a((n k (k - t) + t) 2 k-I - 2:-kik 2 12 
+ 2 22k 1kit

21 _,k-l 2 -k- 1 2

'-k-kl 2~ 2kik1 2 k- 1 1  i - 2 22 + '-k- 1 2 - I) ma(-k
1) maII

-~2ik Ik2  
2 -k-ed

2  
,k-ti 1 + -)k -k 2 12 

nk- ki 2 
+ 12d 2 12 + Ikikt + 1kikl 2 _

2k-

I -t

- -+ 2k-'ki ~- 2'-k1 2 2 ik 2t 2"dt I +2 - 1  12 2"1 2k'~~ 2 1)
2- 1 -2 2

max( 2"In - 2 2ki-M1 + 2" kit ±'''k 2kiI-2 "d- k -I -221

I I 2

mak(2*eIn -~ j"-k ' 2'!kit +- Al - ik-t + 2k-At + -2kk - 2 2 2"

I fe ci' 2kn knk).

Ik

.0 ..

1. k N -A
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16n3 + 2t + 4 -2 _ _k-

~4

g(n) < -g(n, + k(k - t)'+t+Sk

3 3 3 3 3'

g(n) < g(ni + k(k - t) + 1) + 4(k - t)k + t

Y_(4(n,+k(k-t)+t)k- -k +--k k "
- k t)+4(k-t)k +t=

2 1 6 4 3~- + 64k2[ 1 + 4 1
4kni + 2k-t)-8k 2 +4kt+ 16k k16k l6k- k k -t+ k'--kt- +4k 2 -4kt t=

3 3 3 3 3

4kn +k 3 (16- -- )+kt( - 16)+k 2( -8 +4) +kt(4 + 16- 6- 4) + t(l - -)=
3 3 3 3 3'

,14kn- 3-k3+ 16k2t+4k2- 4 -kt- t
4n- 3 3 kt 3 k - 3 ki-3t

Hence, g (n) O (nk + k 3).

%,,i.

E'(n, + - - it n 0!5t5n - 2

4 k-t

f(n)< f f(ni +k(k - t)+t) 6 2k-I +42 2

Letf(n) = 2k-n - 4 "k-fk2 + 2,kt _ 2 k _,k --,1 + -- , 4 - 4 2
S3 3 33

f(n)< X(n,+k~kt).t)+62k-,.42 2 <Y(2k-,(ni+k(k - t)+ ) 4 k-,.-i- 2k-Akt

5k -2 k -k
* 2-t t+ - k--2 2 -± 2  )+6 2k- +4 2 n - 2

3 3' 3

kl ,-_k .2 _ t 4 2k -  1_6 l rk 2 + 16 2,_kt - 20 2,_, + _ _, _ 16 ._ , ,+ .
4 -1~2 ~4 2" t ki ke_1 -k t-1i - 1 + - - 2 6 2k-' +4 2

3 3 3- 3- 3- -

_n - 2k 'k .2k_ 5 k - l k- - 2 2 "- - 2
- I-kik - - -k -

-,3 3 --
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P b

ni , +k = n n1, n' >_ 0

g (n) q (n I(n k (k - 1)) g (n2 + k(k - 1)) .4k

Lctg ,n)=n-6k2 -3k.

g(n)<n C -k--6k 2 +3k+n.,+k 2 -k- 2 +3k+4k 2-=n-6k-+3k

.4 a

n:-,-n2 +k = n n l,n 2,0

f(n) !_f(nI + 2k) +f(n2 + 2k) + 2'
,Letf (n) 2kn - 3 2kk - "

f (n) 2kn2 I 2k2k - 3 2k + 2 kn . + 2k2 - 3 2kk -. k =_ik n 3 k- -*
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